Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Rep ; 11(1): 23315, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1550334

RESUMEN

The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/metabolismo , Desarrollo de Medicamentos/métodos , Reposicionamiento de Medicamentos/métodos , Benzamidas/farmacología , Línea Celular , Simulación por Computador , Coronavirus/química , Bases de Datos Farmacéuticas , Descubrimiento de Drogas/métodos , Interacciones Huésped-Patógeno , Humanos , Imidazoles/farmacología , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , SARS-CoV-2/química , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Triazinas/farmacología , Tratamiento Farmacológico de COVID-19
2.
Molecules ; 26(14)2021 Jul 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1389470

RESUMEN

A tripodal Schiff base ligand, 2,4,6-Tris(4-carboxybenzimino)-1,3,5-triazine (MT) and its trinuclear Dy(III), Er(III), and Gd(III) complexes were synthesized. These were characterized using UV-visible, IR, 1H, and 13C NMR spectroscopies, elemental analysis, and molar conductivity measurements. The spectral studies indicate that the ligand is hexadentate and coordinates to the Ln(III) ions through the oxygen atoms of the carboxylic group. The trinuclear complexes were characterized as being bridged by carboxylate anions to the Dy(III), Er(III), and Gd(III) salen centers and displaying a coordination number of six. Biological studies revealed that MT is more active against the test micro-organisms relative to the trinuclear complexes. Acute toxicity studies revealed that MT is safe and has a wide range of effective doses (ED50). In vivo antimalarial studies indicate that MT could serve as an effective antimalarial agent since it has parasitemia inhibition of 84.02% at 50 mg/kg and 65.81% at 25 mg/kg, close to the value (87.22%) of the standard drug-Artesunate. Molecular docking simulation studies on the compounds against SARS-CoV-2 (6Y84) and E. coli DNA gyrase (5MMN) revealed effective binding interactions through multiple bonding modes. The binding energy calculated for Er(III)MT-6Y84 and Er(III)MT-5MMN complexes showed active molecules with the ability to inhibit SARS-CoV-2 and E. coli DNA gyrase.


Asunto(s)
Triazinas/química , Triazinas/farmacología , Aniones/química , Ácidos Carboxílicos/química , Simulación por Computador , Complejos de Coordinación/química , Cristalografía por Rayos X/métodos , Disprosio/química , Erbio/química , Gadolinio/química , Elementos de la Serie de los Lantanoides/química , Ligandos , Espectroscopía de Resonancia Magnética/métodos , Simulación del Acoplamiento Molecular , Estructura Molecular , Bases de Schiff/química , Triazinas/síntesis química
3.
Antiviral Res ; 194: 105158, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1340541

RESUMEN

It is more than 20 years since the neuraminidase inhibitors, oseltamivir and zanamivir were approved for the treatment and prevention of influenza. Guidelines for global surveillance and methods for evaluating resistance were established initially by the Neuraminidase Inhibitor Susceptibility Network (NISN), which merged 10 years ago with the International Society for influenza and other Respiratory Virus Diseases (isirv) to become the isirv-Antiviral Group (isirv-AVG). With the ongoing development of new influenza polymerase inhibitors and recent approval of baloxavir marboxil, the isirv-AVG held a closed meeting in August 2019 to discuss the impact of resistance to these inhibitors. Following this meeting and review of the current literature, this article is intended to summarize current knowledge regarding the clinical impact of resistance to polymerase inhibitors and approaches for surveillance and methods for laboratory evaluation of resistance, both in vitro and in animal models. We highlight limitations and gaps in current knowledge and suggest some strategies for addressing these gaps, including the need for additional clinical studies of influenza antiviral drug combinations. Lessons learned from influenza resistance monitoring may also be helpful for establishing future drug susceptibility surveillance and testing for SARS-CoV-2.


Asunto(s)
Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , Animales , Antivirales/efectos adversos , Antivirales/farmacología , Dibenzotiepinas/farmacología , Farmacorresistencia Viral , Inhibidores Enzimáticos/farmacología , Humanos , Gripe Humana/virología , Conocimiento , Morfolinas/farmacología , Neuraminidasa/uso terapéutico , Oseltamivir/farmacología , Piridonas/farmacología , SARS-CoV-2/efectos de los fármacos , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Zanamivir/farmacología
4.
J Med Virol ; 93(7): 4454-4460, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1263094

RESUMEN

Although vaccination campaigns are currently being rolled out to prevent coronavirus disease (COVID-19), antivirals will remain an important adjunct to vaccination. Antivirals against coronaviruses do not exist, hence global drug repurposing efforts have been carried out to identify agents that may provide clinical benefit to patients with COVID-19. Itraconazole, an antifungal agent, has been reported to have activity against animal coronaviruses. Using cell-based phenotypic assays, the in vitro antiviral activity of itraconazole and 17-OH itraconazole was assessed against clinical isolates from a German and Belgian patient infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Itraconazole demonstrated antiviral activity in human Caco-2 cells (EC50 = 2.3 µM; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay). Similarly, its primary metabolite, 17-OH itraconazole, showed inhibition of SARS-CoV-2 activity (EC50 = 3.6 µM). Remdesivir inhibited viral replication with an EC50 = 0.4 µM. Itraconazole and 17-OH itraconazole resulted in a viral yield reduction in vitro of approximately 2-log10 and approximately 1-log10 , as measured in both Caco-2 cells and VeroE6-eGFP cells, respectively. The viral yield reduction brought about by remdesivir or GS-441524 (parent nucleoside of the antiviral prodrug remdesivir; positive control) was more pronounced, with an approximately 3-log10 drop and >4-log10 drop in Caco-2 cells and VeroE6-eGFP cells, respectively. Itraconazole and 17-OH itraconazole exert in vitro low micromolar activity against SARS-CoV-2. Despite the in vitro antiviral activity, itraconazole did not result in a beneficial effect in hospitalized COVID-19 patients in a clinical study (EudraCT Number: 2020-001243-15).


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Furanos/farmacología , Itraconazol/farmacología , Pirroles/farmacología , SARS-CoV-2/efectos de los fármacos , Triazinas/farmacología , Adenosina/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/farmacología , Animales , Células CACO-2 , Línea Celular Tumoral , Chlorocebus aethiops , Reposicionamiento de Medicamentos , Humanos , Células Vero , Replicación Viral/efectos de los fármacos
5.
SLAS Discov ; 26(3): 336-344, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-934236

RESUMEN

The reuse of preexisting small molecules for a novel emerging disease threat is a rapid measure to discover unknown applications for previously validated therapies. A pertinent and recent example where such a strategy could be employed is in the fight against coronavirus disease 2019 (COVID-19). Therapies designed or discovered to target viral proteins also have off-target effects on the host proteome when employed in a complex physiological environment. This study aims to assess these host cell targets for a panel of FDA-approved antiviral compounds including remdesivir, using the cellular thermal shift assay (CETSA) coupled with mass spectrometry (CETSA MS) in noninfected cells. CETSA MS is a powerful method to delineate direct and indirect interactions between small molecules and protein targets in intact cells. Biologically active compounds can induce changes in thermal stability, in their primary binding partners, and in proteins that in turn interact with the direct targets. Such engagement of host targets by antiviral drugs may contribute to the clinical effect against the virus but can also constitute a liability. We present here a comparative study of CETSA molecular target engagement fingerprints of antiviral drugs to better understand the link between off-targets and efficacy.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Antivirales/farmacología , Proteínas de Ciclo Celular/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Adenosina/análogos & derivados , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Reposicionamiento de Medicamentos , Furanos/farmacología , Células Hep G2 , Humanos , Espectrometría de Masas , Proteómica/métodos , Pirroles/farmacología , Triazinas/farmacología , Estados Unidos , United States Food and Drug Administration , Tratamiento Farmacológico de COVID-19
6.
Nat Commun ; 11(1): 2750, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: covidwho-680538

RESUMEN

Influenza viruses annually kill 290,000-650,000 people worldwide. Antivirals can reduce death tolls. Baloxavir, the recently approved influenza antiviral, inhibits initiation of viral mRNA synthesis, whereas oseltamivir, an older drug, inhibits release of virus progeny. Baloxavir blocks virus replication more rapidly and completely than oseltamivir, reducing the duration of infectiousness. Hence, early baloxavir treatment may indirectly prevent transmission. Here, we estimate impacts of ramping up and accelerating baloxavir treatment on population-level incidence using a new model that links viral load dynamics from clinical trial data to between-host transmission. We estimate that ~22 million infections and >6,000 deaths would have been averted in the 2017-2018 epidemic season by administering baloxavir to 30% of infected cases within 48 h after symptom onset. Treatment within 24 h would almost double the impact. Consequently, scaling up early baloxavir treatment would substantially reduce influenza morbidity and mortality every year. The development of antivirals against the SARS-CoV2 virus that function like baloxavir might similarly curtail transmission and save lives.


Asunto(s)
Antivirales/uso terapéutico , Epidemias , Gripe Humana/tratamiento farmacológico , Orthomyxoviridae/efectos de los fármacos , Oxazinas/uso terapéutico , Piridinas/uso terapéutico , Tiepinas/uso terapéutico , Triazinas/uso terapéutico , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , COVID-19 , Proliferación Celular , Infecciones por Coronavirus/tratamiento farmacológico , Dibenzotiepinas , Humanos , Gripe Humana/virología , Morfolinas , Oseltamivir/farmacología , Oseltamivir/uso terapéutico , Oxazinas/farmacología , Pandemias , Neumonía Viral/tratamiento farmacológico , Salud Pública , Piridinas/farmacología , Piridonas , ARN Mensajero/metabolismo , SARS-CoV-2 , Estaciones del Año , Tiepinas/farmacología , Triazinas/farmacología , Carga Viral , Replicación Viral/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 117(34): 20803-20813, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: covidwho-695945

RESUMEN

Virus entry is a multistep process. It initiates when the virus attaches to the host cell and ends when the viral contents reach the cytosol. Genetically unrelated viruses can subvert analogous subcellular mechanisms and use similar trafficking pathways for successful entry. Antiviral strategies targeting early steps of infection are therefore appealing, particularly when the probability for successful interference through a common step is highest. We describe here potent inhibitory effects on content release and infection by chimeric vesicular stomatitis virus (VSV) containing the envelope proteins of Zaire ebolavirus (VSV-ZEBOV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (VSV-SARS-CoV-2) elicited by Apilimod and Vacuolin-1, small-molecule inhibitors of the main endosomal phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase, PIKfyve. We also describe potent inhibition of SARS-CoV-2 strain 2019-nCoV/USA-WA1/2020 by Apilimod. These results define tools for studying the intracellular trafficking of pathogens elicited by inhibition of PIKfyve kinase and suggest the potential for targeting this kinase in developing small-molecule antivirals against SARS-CoV-2.


Asunto(s)
Betacoronavirus/efectos de los fármacos , Ebolavirus/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas , Triazinas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Betacoronavirus/fisiología , COVID-19 , Células Cultivadas , Infecciones por Coronavirus , Ebolavirus/fisiología , Edición Génica , Humanos , Hidrazonas , Pandemias , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Neumonía Viral , Pirimidinas , SARS-CoV-2 , Proteínas del Envoltorio Viral/genética
8.
Nature ; 586(7827): 113-119, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-672174

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of the severe pneumonia-like disease coronavirus disease 2019 (COVID-19)1. The development of a vaccine is likely to take at least 12-18 months, and the typical timeline for approval of a new antiviral therapeutic agent can exceed 10 years. Thus, repurposing of known drugs could substantially accelerate the deployment of new therapies for COVID-19. Here we profiled a library of drugs encompassing approximately 12,000 clinical-stage or Food and Drug Administration (FDA)-approved small molecules to identify candidate therapeutic drugs for COVID-19. We report the identification of 100 molecules that inhibit viral replication of SARS-CoV-2, including 21 drugs that exhibit dose-response relationships. Of these, thirteen were found to harbour effective concentrations commensurate with probable achievable therapeutic doses in patients, including the PIKfyve kinase inhibitor apilimod2-4 and the cysteine protease inhibitors MDL-28170, Z LVG CHN2, VBY-825 and ONO 5334. Notably, MDL-28170, ONO 5334 and apilimod were found to antagonize viral replication in human pneumocyte-like cells derived from induced pluripotent stem cells, and apilimod also demonstrated antiviral efficacy in a primary human lung explant model. Since most of the molecules identified in this study have already advanced into the clinic, their known pharmacological and human safety profiles will enable accelerated preclinical and clinical evaluation of these drugs for the treatment of COVID-19.


Asunto(s)
Antivirales/análisis , Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , COVID-19 , Línea Celular , Inhibidores de Cisteína Proteinasa/análisis , Inhibidores de Cisteína Proteinasa/farmacología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidrazonas , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Morfolinas/análisis , Morfolinas/farmacología , Pandemias , Pirimidinas , Reproducibilidad de los Resultados , SARS-CoV-2 , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Triazinas/análisis , Triazinas/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA